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Dear Editors  

  

Attached please find our manuscript “Angling counts: harnessing the power of technological 

advances for recreational fishing surveys” for your consideration to be published as an article 

in Fisheries Research. This study presents two novel methods to assess recreational fishing 

effort, i) images taken from fixed wing drones, and ii) daily anonymous user digital data from 

a small personal fish-finder device, and compares them with more conventional surveys. 

Recreational fishing can have substantial impact on inland and coastal ecosystems, yet 

assessing its effort remains problematic, expensive and highly uncertain. We demonstrate these 

two potentially widely applicable novel methods using an example from a large inland water 

body in Lithuania. We show that fixed wing drones can provide accurate, cost effective and 

objective estimates of angling effort and have high potential for future improvements in 

efficiency and automation. Further, we introduce for the first time, to our knowledge, the 

application of anonymous data acquired from a fish-finder device, to provide highly resolved 

spatial and temporal measures of angling activity. Such effort data could potentially transform 

assessments of recreational fishing, but its wide application requires careful calibration and 

assessment of error. Calibration was a preeminent component of our study, enabling detailed 

analysis of recreational fishing effort and its dependence on season and weekdays. We believe 

that this study will be of interest to the Fisheries Research audience and will encourage pursuit 

of further studies in this field.  

  

Yours sincerely 

On behalf of all co-authors 

Justas Dainys 
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Fixed-wing drones can provide effective and accurate angler effort assessment 
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Abstract 16 

 17 

As the popularity of recreational fishing gathers global momentum, so does the importance of 18 

knowing the number of active anglers and their spatial behavior. Conventional counting methods, 19 

however, can be inaccurate and time-consuming. Here we present two novel methods to monitor 20 

recreational fishing applied in Kaunas water reservoir (ca 65 km2), Lithuania, comparing their 21 

performance to a conventional visual count. First, we employed a remotely piloted fixed wing drone 22 

which conducted 39 missions distributed over one year and compared its accuracy to conventional 23 

visual land or boat-based counts. With these data we developed a linear model to predict the annual 24 

number of anglers depending on weekday and ice conditions. Second, we used anonymous data from 25 

a popular GPS-enabled sonar device Deeper®, used by anglers to explore underwater landscapes and 26 

to find fish. The sonar usage probability was calibrated with angler observations from drones using 27 

Bayesian methods, demonstrating that at any given time ~2% of anglers are using the sonar device 28 

during the open water season and ~15% during the ice fishing season. The calibrated values were 29 

then used to estimate the total number of anglers, given the daily records of sonar usage in Kaunas 30 

water reservoir. The predicted annual number of anglers from both linear drone-based and Bayesian 31 

sonar-based methods gave similar results of 25 and 27 thousand anglers within the area during the 32 

period of day surveyed, which corresponded to nearly 110 thousand angling trips in the total reservoir 33 

area annually. Our study shows high potential of both drone and fish finder digital devices for 34 

assessing recreational fishing activities through space and time.  35 

 36 

Key words: Drone, sonar, visual surveys, echosounder, GPS, fish finder. 37 

  38 
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1. Introduction 39 

 40 

In developed nations about one in ten people fish for recreational purposes (Arlinghaus and Cooke, 41 

2009). Worldwide, the estimated number of recreational fishers is close to 220 million (World Bank, 42 

2012; Arlinghaus et al., 2015), which is five time higher than the number of commercial fishers (FAO, 43 

2018). As many developed countries increasingly reduce inland and coastal commercial fisheries, 44 

recreational fishing becomes the most important sector and a major ecological force (Arlinghaus et 45 

al., 2015, 2019). The strength of this force varies extensively, but there are many cases where 46 

recreational fisheries catches exceed those of the commercial sector (Coleman et al., 2004; Cooke 47 

and Cowx, 2004; Morales-Nin et al., 2005). Growing recognition of the importance of recreational 48 

fishing has led to many countries adopting policies requiring assessment of fishing effort (Regulatory 49 

Impact Solutions, 2019), both for ecological reasons to ensure exploitation remains sustainable (Pope 50 

et al., 2017), but also as a measure of economic activity. Hyder et al. (2018) estimated that in the 51 

European Union (EU) almost 9 million recreational sea anglers representing the 1.6% of citizens 52 

(Baltic States 1.5–2.0%) collectively fished for 78 million days spending on average €5.9 billion per 53 

year. EU member states have an obligation to collect annual data from marine recreational fishing 54 

(EU, 2001), but fulfilling these requirements remains a substantial challenge. Unlike commercial 55 

fishing with compulsory reporting, a lot of recreational fisheries data collection relies on volunteerism 56 

(Rotman et al., 2012) or time-consuming surveys. Anglers can be highly mobile in search of fishing 57 

opportunities (Papenfuss et al., 2015), and fisheries can occur over large geographic areas 58 

encompassing all waterbodies in a country. 59 

Conventionally, data on recreational effort and catch is collected using regular onsite surveys such as 60 

creel surveys or aerial- and vessel-based counts, recall surveys such as web, phone and postal surveys, 61 

angler diaries or high frequency time-lapse cameras and fixed cameras (Steffe et al., 2005; Smallwood 62 

et al., 2011; Bellanger and Levrel, 2017; Askey et al. 2018; Conron et al., 2018). All of these have 63 

their own challenges and limitations. Phone or postal surveys have increasingly low participation 64 

rates, especially as data communication moves onto digital platforms (Tate and Smallwood, 2021), 65 

and do not necessarily represent an unbiased sample of the angler population. Boat-based census, 66 

roving creel surveys on foot, or aerial surveys, require substantial human and operational resources 67 

(vessel, tow vehicle, fuel, airplane hire) and can be time consuming and costly (Ryan et al., 2009). 68 

Time-lapse or fixed cameras which can collect information about effort are relatively cheap but are 69 
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impractical in some places due to equipment loss, immobility, and time-consuming image processing 70 

and analyses (Afrifa-Yamoah et al., 2021).  71 

Two recent technological advancements hold promise for improving the accuracy and cost-72 

effectiveness of angler effort assessments. The first one employs camera-equipped remotely piloted 73 

aircraft (Chapman, 2014), hereinafter - drones. Given the growing success of drones for supporting 74 

coastal management, they may also provide a cost-effective solution for collecting data on 75 

recreational fishing effort (Provost et al., 2020a). This approach uses aerial surveys to gather a series 76 

of instantaneous counts of the number of active anglers and then extrapolates that information to an 77 

estimate of angler effort over an entire fishing season (e.g., Fraidenburg and Bargmann, 1982; Vølstad 78 

et al., 2006). Despite a rapid uptake of drones in multiple areas, only a few studies have attempted to 79 

count anglers using this technology. Desfosses et al. (2019) suggest that multi-rotor drones are not 80 

efficient for recreational fishing surveys due to short battery endurance, low flying speed, sensitivity 81 

to strong winds, dependence on visual line of sight and regulations requiring certification of operators. 82 

They suggested that fixed-wing drones that have extended-visual line of sight (EVLOS) and longer 83 

battery life could be viable alternatives but will still be affected by weather conditions. The second 84 

approach involves angler smart phone applications (apps) which have grown in popularity over the 85 

last decade (Venturelli et al., 2016; Skov et al., 2021). These may be developed by commercial 86 

companies or research institutions, and they allow fishers to register and share information with 87 

researchers about their trips and catches (e. g. Gundelund et al., 2020). Often, the apps include 88 

ancillary features that are attractive to anglers such as social networking, information about rules and 89 

regulations, depth profile maps and identifiable sonar features. When designed properly and used by 90 

a sufficient proportion of anglers, such apps have the potential to provide sufficiently accurate 91 

information on catch rates and angling effort, as in the case of coastal seatrout fishery in Denmark 92 

(Gundelund et al., 2020).  93 

In this study, we further advance the drone and smart phone application-based methods for angler 94 

assessments, aiming to improve their utility by building on their strengths and redressing their 95 

limitations. Throughout one year we conducted a range of surveys in a large (ca 65 km2) inland water 96 

reservoir (WR) which is one of the most popular recreational fishing destinations in Lithuania. We 97 

compared recreational fishing effort assessment from fixed-wing drone surveys, visual land and boat-98 

based surveys and anonymous data from a smartphone application that integrates with a sonar (fish 99 

finder) deployed in the water and developed models to assess recreational fishing effort through space 100 

and time. The overall objective was to understand if and when drones and sonar applications for 101 

anglers could be used to estimate angling effort. 102 
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 103 

2. Materials and Methods 104 

 105 

2.1 Research area 106 

Our study area is Kaunas WR (54.87, 24.14), the largest Lithuanian artificial water body, created in 107 

1959 (Fig. 1). It occupies 63.5 km2, spans 3.3 km at its widest point, and has a maximum depth of 22 108 

meters. The reservoir is a highly productive ecosystem and for decades supported an intensive 109 

commercial fishery, with annual catches averaging 128 tons during 1999–2012. Due to this intensive 110 

fishing, stocks of many species collapsed, and the commercial fishery was completely closed in 2013. 111 

Since then, the abundance and biomass of most species has recovered rapidly (Ložys et al., 2020) and 112 

the reservoir has become one of the most popular angling spots in Lithuania. The dominant fish 113 

species in the reservoir are roach (Rutilus rutilus), perch (Perca fluviatilis), white bream (Blicca 114 

bjoerkna), bream (Abramis brama) and pikeperch (Sander lucioperca) (Ložys et al., 2020).  115 

 116 

 117 

2.2 Drone missions 118 

The survey period covered one year, starting in March 2020 and finishing on March 2021 119 

encompassing an ice-free ‘open water season’ and a winter ‘ice fishing season’ when the surface 120 

waters of the reservoir were frozen. During the survey period we conducted 39 drone missions, 121 

distributed throughout the four seasons of the year. Ten flights were flown during each of summer, 122 

autumn and winter seasons, and nine missions were performed in spring. During each season four 123 

missions were performed on weekends and six during working days, aiming to distribute the missions 124 

randomly through time. Weather conditions did not influence the mission schedule that was set in 125 

advance. All missions were conducted in the morning between 8am and 11am to reduce variation due 126 

to the time of the day and maximise information related to season and weekday; hence direct 127 

extrapolations from these surveys were done for mornings only (see below). Permission for all flights 128 

was granted by the Lithuanian Transport Safety Administration, NOTAMs issued by SE „Oro 129 

navigacija“ (State Enterprise Air Navigation). The drone angler surveys were performed using a 130 

custom drone SilverBee_V3000 by Thrust® (AeroDiagnostika Ltd.), equipped with two wide-angle 131 

RGB video cameras. SilverBee_V3000 is an electric fixed-wing drone with a maximum take-off 132 

weight of 7.5 kg and payload of 1 kg. The optimum flight time of the drone with payload is 45–60 133 

min. per battery, depending on the weather conditions. Because the northern part of the Kaunas WR 134 

falls within the local airport no-fly zone, we surveyed about 70% of the reservoir area, for which 135 
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flight permits could be obtained. This area covered about 33 km2 and was surveyed in two flights 136 

(northern and southern), operated from one land-based location (Fig. 1). The maximum straight-line 137 

distance between the drone and the operator was around 8 km during the flight and all flights were 138 

performed beyond visual line of sight. The flights were fully automated and controlled by the drone’s 139 

on-board autopilot following the pre-programmed flight trajectory with global navigation satellite 140 

system, inertial navigation system and electronic compass to ensure precise geolocation. Real-time 141 

drone performance parameters and mission progress status were continuously monitored using 433 142 

MHz wireless radio and/or 4G mobile connection during the flight. 143 

Several combinations of sensors were tested during the optimisation of angler counting, to maximise 144 

efficiency, payload and quality of the visual data to enable visual identification of anglers in boats 145 

and onshore. After testing alternative cameras with resolution ranging 2–50 megapixel, lenses with 146 

focal length of 3 –50 mm, and resulting payload of 0.1–1.0 kg, the optimal trade-off in terms of 147 

weight, data amounts and angler count accuracy was to use two side-by-side wide-angle (3 mm focal 148 

length) 12-megapixel video cameras, with a combined weight of 0.2 kg. One camera was oriented 149 

along the flight direction facing forward with a downward angle of ~25°, and the second camera was 150 

placed on the right side of the drone, oriented towards the shore at a ~30° angle (Fig. 1). This allowed 151 

us to achieve a >180° angle of view both horizontally and vertically.  152 

 153 

 154 

The drone trajectory followed the shoreline at a distance of ca 75–100 m and altitude of 50–70 m, 155 

flying at a speed of 16 –18 m/s (58 –65 km/h). This observation angle and flying height gave the 156 

width of the survey corridor of 1000–1600 m. This means that in our case a single scan along the 157 

perimeter of the reservoir was sufficient to fully cover the study area (Fig. 1), while avoiding 158 

surveying overlapping areas and counting the same anglers multiple times (unless anglers relocate to 159 

an opposite shore within the 30 min of one mission). The width of the survey corridor can be adjusted 160 

depending on the site, which can increase the efficiency of the aerial survey compared to grid-like or 161 

spiral-like scanning with a smaller field of view. Flights were made during a range of weather 162 

conditions, including light rain, fog, snow, strong winds (up to 15 m/s) and low temperatures (-20C°). 163 

In very strong opposing winds, ground speed could be as low as 3 m/s, yet this did not affect the 164 

survey because flight trajectories were programmed in advance. Following the completion of each 165 

drone mission onsite, the video material from both cameras was analysed manually together with the 166 

telemetry logs for geolocation.  167 

 168 
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2.3 Visual surveys 169 

To compare the accuracy and precision of drone-based surveys with traditional land-based methods, 170 

we performed five angler count surveys of which three were done from a boat during the open water 171 

season and two were done by walking during the ice fishing season. Boat-based surveys were 172 

undertaken from an inflatable boat equipped with a 3 HP engine, travelling at 8–9 km h-1 speed at a 173 

distance of ca. 300 m from the shore (Fig. 1). Anglers were observed using binoculars (DELTA 174 

Optical Forest II 8.5x50) and each angler was attributed to a category of either “on-shore” or “fishing 175 

from a boat” and their approximate coordinates were noted. During the ice fishing season, fishers 176 

were counted by the observer from 12 fixed sites, which provided a good field of view across the 177 

reservoir (Fig. 1). As per the boat surveys, binoculars were used to count anglers and identify their 178 

approximate location.  179 

 180 

2.4 Sonar data 181 

Deeper® sonars comprise a set of portable wireless sonar-based fish-finders, generally used by anglers 182 

for fish finding, depth measuring and making bathymetry maps for personal use. More information 183 

about the different DeeperSonar company’s fish-finder models and their technical characteristics is 184 

available at https://deepersonar.com/. According to company data and our angler surveys (unpubl. 185 

data) about 20% of Lithuanian anglers own one of several models of this fish finder; these anglers 186 

use the device in about 20–50% of their trips. The anonymous sonar usage information for Lithuania 187 

was obtained through a collaborative agreement with the DeeperSonar company, in accordance with 188 

the data privacy and protection requirements. The dataset included individual sonar usage events, 189 

identified through unique encoded user ID, time and coordinates of the starting point, followed by 190 

coordinates of all sonar reading points taken during the trip. For each new reading, the user can select 191 

to either start a new trip, or continue the same trip, so in our analyses we filtered unique users per day 192 

to exclude repeated missions by the same user. The country-wide dataset was filtered to extract 193 

records located within the Kaunas reservoir (with a 50 m buffer, to ensure all anglers on the shore 194 

were included), and then divided into smaller datasets that included only anglers within the drone 195 

survey area and time period (see below).  196 

 197 

2.5 Statistical analysis 198 

To compare visual and drone surveys we used an unpaired t-test (data in Table A.1) (adding Welsh 199 

correction for unequal variances gave nearly identical results). In this test we compared total angler 200 

count (on shore, in boats and on ice) from the two methods (five sampling days), number of anglers 201 

https://deepersonar.com/
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counted on shore (three days), number of boats counted (three days) and number of anglers in boats 202 

(three days) (see Results for details and numbers counted). Post-hoc power analysis of effect size and 203 

minimum detectable difference was undertaken for the t-test results. 204 

 205 

To estimate and predict the total number of anglers within the surveyed reservoir area and time period 206 

(mornings only), we used the angler counts from the 39 drone surveys in a linear model, where angler 207 

numbers were modelled as a function of weekday/weekend, season, open-water/ice, cloudiness (clear, 208 

cloudy, rain, fog, snow) and wind conditions, including their interactions. Angler numbers were log 209 

transformed to ensure that the model did not predict negative values. After exploring model 210 

performance and the residuals we identified two outlier day observations, at the start of the drone 211 

survey period. For these days unusually low angler numbers were observed. It is possible low angler 212 

numbers on these days indicated a lack of experience during the initial drone surveys or the effects 213 

of the COVID-19 lockdowns. To avoid the two outlier days unduly affecting our model predictions 214 

we conducted analyses with the two days both excluded and included. When the two outlier days 215 

were excluded, model residuals showed an improved and adequate fit to the assumptions of normality. 216 

We tested a range of alternative model formulations and identified the most important explanatory 217 

variables, in a model selection process based on the Akaike Information Criterion (AIC) and Chi-218 

square test of nested models (see Table S2 for model formulations and model selection outcomes). 219 

Once the best model was selected, we then used this model to estimate the total number of anglers 220 

per year.  221 

 222 

Next, to compare drone and sonar-based angler counts, we used Bayesian methods to estimate the 223 

probability (𝑝𝑑) of sonar use on each of the 39 drone survey days. This probability combines the 224 

probability that anglers who fished in the reservoir on that day both own a Deeper® sonar device and 225 

use it on that specific fishing trip. The sonar usage dataset was filtered in three different ways. First, 226 

we selected sonar usage data only from the area and time period surveyed by drones. Drone flights 227 

were conducted ca 8–11 am, so we used those sonar data for which the start time of the trips was 228 

between 6 am to 12 pm; this aimed to account for the fact that most anglers use the sonar device at 229 

the start of the fishing trip, but in theory could also use it later during the same trip. The second dataset 230 

of sonar usage included all sonar users within the area surveyed by the drone on each specific day, 231 

regardless of when their sonar was used during that day. Finally, to assess the relative proportion of 232 

anglers in the surveyed area versus the entire Kaunas WR, we also extracted the number of sonar 233 

usage trips started anytime during the days of the drone surveys. This last dataset had the largest 234 
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number of sonar records and was used to estimate the ratio between the total number of anglers in the 235 

reservoir fishing at any time of the day, and the number of anglers counted by drones (smaller area 236 

confined to the morning). Note, that the northern part of the Kaunas WR that was inaccessible for the 237 

drone, is also closest to the city of Kaunas, and therefore we expected high numbers of anglers in that 238 

area. We assumed that the proportion of sonar users remained similar in different areas of Kaunas 239 

WR and during different times of the day. The full dataset of anglers counted by drones, as well as 240 

the three sets of sonar users is provided in Table A.3.  241 

 242 

Each of these three sonar usage datasets was related to the drone angler surveys allowing for the 243 

probability of sonar usage to differ on weekdays and weekends. The weekend multiplier a means that 244 

the final probability pd of sonar usage is expressed as r0*e(aW), where 𝑟0 indicates the general sonar 245 

use probability and W represents weekdays (0) or weekends (1). The value of 0 for the a parameters 246 

would indicate the same probability of sonar usage on weekdays and weekends, whereas values of e. 247 

g. 1 would mean almost 3 times higher weekend or ice fishing probability of sonar use. To ensure the 248 

estimated probabilities are always positive in analyses we used a linearised version of this equation:  249 

 250 

𝑝𝑑 = 1 − 𝑒−(𝑟0𝑒𝑎W) 251 

 252 

The r0 parameter was assumed to be drawn from an exponential distribution with rate parameter r1 253 

and log likelihood defined as logL = log(r1) – r1*r0. The weekend probability multiplier was drawn 254 

from a normal distribution with zero mean and standard deviation of 10. These probabilities form the 255 

basis of our likelihood function and we used Bayesian methods to estimate a and r0. Our initial 256 

analyses showed that sonar usage differed greatly between the open water and ice fishing seasons, 257 

because the specific Deeper® sonar device (small, portable) is especially convenient for ice fishing, 258 

while during the open water fishing season many anglers use more advanced sonar devices that can 259 

be attached to boats. We therefore conducted two separate analyses for open water and ice fishing 260 

season 261 

 262 

Finally, we also used Bayesian methods on the sonar dataset to estimate the proportion of anglers in 263 

the morning for the surveyed area versus the total number of fishing trips recorded on that day. (i.e. 264 

comparing sonar 1 dataset in Table S3 versus sonar 3 dataset). For these analyses we used all 365 265 

days of sonar observations from March 1, 2020 to March 1, 2021, which were divided into 316 open 266 
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water days and 49 ice fishing days (based on known weather and ice records). Here the r0 compares 267 

the relative number of sonar users in the two sonar datasets, whereas weekend multiplier a estimates 268 

whether this ratio differst between weekdays and weekends. Here again, we assumed that the 269 

proportion of sonar users among all anglers was similar in different parts of the reservoir and at 270 

different times of the day.  271 

 272 

Markov Chain Monte Carlo (MCMC) sampling was run for 200K iterations, of which the first 10 –273 

20K were discarded as the burn-in, after checking for convergence of the likelihood estimates. The 274 

remaining runs were used to generate posterior probability density ranges, after checking that the 275 

posterior distributions were unimodal indicating convergence. We conducted analyses with different 276 

priors, but solutions always converged to nearly identical posterior parameter estimates. All analyses 277 

were conducted in R 4.0.3 or 4.0.5 (R Core Team, 2011), full analysis code and data are available on 278 

https://github.com/astaaudzi/anglerCounts and as a supplement to this manuscript.  279 

 280 

3. Results 281 

 282 

3.1 Drone surveys give accurate estimates of angler numbers when compared with traditional, 283 

land-based surveys 284 

 285 

During the 39 days of drone surveys a total of 2980 anglers were observed. The number observed per 286 

day varied from 7 to 180, with a median value of 69 anglers. The largest number of anglers was 287 

observed during the ice-fishing season (N=180). Of the 2980 anglers, the majority (2378) were 288 

observed during the open-water season; of these 43.0% were land based and 57.0% were boat based. 289 

During winter (ice fishing season) 602 anglers were observed. Over the five days of visual land and 290 

boat-based surveys, 424 anglers were counted in total (324 during open water, and 100 during ice 291 

fishing seasons). The number of anglers observed per day varied from 41 to 205, with a median value 292 

of 59. During the open-water season 27.5% of anglers observed visually were land based and 72.5% 293 

were boat based. There were no significant differences between total angler numbers observed by 294 

traditional visual methods and drone surveys, including for anglers observed on shore or from boats, 295 

or the total number of boats counted (t-test, P values > 0.75, Table A.1). A caveat to this result is that 296 

due to the low number of replications, the statistical power to detect differences was low at only 5–297 

6%, so the test would only detect very large difference as significant. Nevertheless, the correlations 298 

https://github.com/astaaudzi/anglerCounts
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among the methods were extremely high. Usually, the total count of anglers was almost the same, 299 

and small differences were likely due to angler movements and slight differences in survey times. 300 

Drone and boat-based surveys sometimes differed by up to 1 hour due to different boat and drone 301 

movement speeds. The only clear discrepancy was observed when counting anglers in boats, where 302 

drone and visual surveys counted 146 and 186 anglers, respectively. These mismatches were mainly 303 

due to the different number of anglers in a single boat counted by the two methods, because the 304 

number of boats was almost the same (98 vs. 99). Separating passengers and anglers in a boat from 305 

drone observations was deemed to be too difficult, and in drone surveys one boat was typically 306 

assumed to correspond to one or two anglers.  307 

 308 

Linear model selection showed that the best selected model included the interaction of ice cover with 309 

weekend / weekday (R2 = 0.32). The second-best model with the same AIC value had only the 310 

weekend effect (R2 = 0.22) (Table A.2, Fig. A.1). The model with the two outliers included had an 311 

almost identical effect on estimates but explained considerably less of the variance (R2 = 0.16). In all, 312 

the best selected model indicated a significantly higher number of anglers fishing during the 313 

weekends, especially on weekends with ice cover (Fig. 2).  314 

 315 

 316 

The best statistical model could now be used to predict the number of anglers over the entire year. 317 

For this we used the one-year period starting from 2020-03-01, which includes the ice fishing season 318 

between 2021-01-10 and 2021-02-28. The estimated mean and confidence intervals of angler 319 

numbers in the assessed area were ~25*103 (20*103–31*103) (Table 1), which included 22*103 for 320 

the open water fishing season and ca 3*103 for the seven weeks of the ice fishing season. When the 321 

two outlier days were included in the analyses, overall predictions were similar, but confidence ranges 322 

were wider (mean 22458, 95% CI of 15868 –32291). Finally, if only a model with weekday and 323 

weekend effects was used, then the predicted annual number was almost identical, at 25031 (20739–324 

30212). Note, that this prediction only applies for the surveyed area (ca 70% of the total reservoir 325 

area) and time period (i.e. anglers who fish during the first half of the day). To extrapolate these 326 

estimates to the entire area of the Kaunas WR and fishing trips conducted at any time of the day we 327 

used the sonar data, as described below.  328 

 329 

Table 1. Predicted annual number of anglers with 95% confidence ranges based on the linear model 330 

from drone estimates, and Bayesian posterior probability median and 95% credible interval ranges 331 
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based on daily sonar counts in Kaunas water reservoir. Prediction is for the time period of 2020-03-332 

01 to 2021-02-28, which includes the ice fishing season (which lasted between 2021-01-15 and 2021-333 

02-28). Estimates of total angler numbers in Kaunas WR combine uncertainties for angler proportion 334 

in the surveyed area and those for extrapolating to the entire WR.  335 

_______________________________________________________________________________  336 

Method Total number Open water only Ice season only  337 

__________________________________________________________________________________________ 338 

Surveyed area, mornings only  339 

Linear model 25 126 (20 086–31 603)   22 097 (18 097–26 984) 3 030 (1 989–4 618) 340 

Bayesian 26 696 (14 256–58 201)  24 221 (12 457–54 823) 2 475 (1 799–3 378) 341 

 342 

Estimate for the total Kaunas WR 343 

method 1 107 175 (52 594–254 563) 97984 (44 489 –236 304) 12 191 (8 104–18 259) 344 

method 2 108 434 (59 359–228 493) 96407 (50 630–212 070) 12 027 (8 729–16 423) 345 

__________________________________________________________________________________________ 346 

 347 

3.2 Angler effort estimated from drones is similar to sonar use data 348 

 349 

After establishing that drone surveys can produce accurate measures of angler numbers, we now 350 

calibrated sonar usage data against the drone observations. In the first analysis we compared drone-351 

based estimates with the smallest sonar dataset, which only included sonar users who logged the start 352 

of their fishing “trip” within the area surveyed by the drone at between 6 am and 12 pm. In the open 353 

water fishing season, the estimated baseline proportion of sonar users (r0) was ca 1% (95% posterior 354 

probability density PPD of 0.5–1.7%) (Table 2, Fig. 3). This probability was ~3.5 times higher on 355 

weekends (Table 2, exp(a) = exp (1.24) = 3.46). As a result, the final average probability of sonar 356 

usage was 2.0% (95% PPD of 1.5–2.6%). For the ice fishing season, the probability of sonar usage 357 

was considerably higher, because the Deeper® sonar device is particularly popular for this purpose. 358 

The proportion of sonar users was similar between weekdays and weekends during the ice fishing 359 

season; the final probability was 15% (12–18%, Table 2). As expected, when the same analyses were 360 

repeated using sonar users who started their trips at any time of the day, the number of sonar users 361 

relative to the total number of anglers (counted in the morning) increased. This was most prominent 362 

during the open water season, where the estimated proportion was more than twice as large (final 363 

probability of 5.4% rather than 2.0%). This suggested that drone counts conducted during the morning 364 

only detected about half of all the anglers who fished on that day (Figures A.3 and A.4). During the 365 
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ice season, most angling trips commenced in the morning, and the difference between the two datasets 366 

was very small (14.8% and 17.2% respectively, Table 2).  367 

 368 

To obtain a better extrapolation of angler numbers from the drone counts (mornings only, and the 369 

70% of the water reservoir area where drones were allowed to fly) to the total number of anglers in 370 

the reservoir, we conducted a separate analysis with the daily sonar usage data. These analyses 371 

showed that the ratio between the two datasets was ~25% during the open water and ~20% in the ice 372 

fishing seasons. The majority of anglers concentrated in the northern area of the water reservoir, 373 

where drone flights were not allowed, mainly because the northern area is adjacent to the city of 374 

Kaunas.  375 

 376 

Table 2. Bayesian parameter estimates (50% posterior probabilities and 95% ranges) for the 377 

proportion of anglers using a sonar device, compared to the number of anglers counted by drone and 378 

the proportion of sonar users in the surveyed area and time period versus total daily number of users 379 

in the reservoir.  380 

_____________________________________________________________________________________ 381 

Parameter Explanation Open water season Ice season  382 

_________________________________________________________________________________________ 383 

Main drone – sonar analysis (sonar dataset 1, same spatial area, only morning sonar trip) 384 

r0 initial sonar use probability 0.010 (0.005–0.017) 0.152 (0.114–0.190) 385 

a  weekend multiplier (log) 1.241 (0.606–1.934) 0.079 (0.003–0.346) 386 

p  final sonar use probability  0.020 (0.015–0.026) 0.148 (0.121–0.178) 387 

 388 

Drones – sonar dataset 2 (same spatial area, trips started any time of the day) 389 

r0 initial sonar use probability 0.037 (0.027–0.049) 0.180 (0.137–0.221) 390 

a  weekend multiplier (log) 0.759 (0.405–1.147) 0.074 (0.003–0.306) 391 

p  final sonar use probability  0.054 (0.046–0.063) 0.172 (0.143–0.203) 392 

 393 

Ratio of anglers in sonar dataset 1 vs. sonar dataset 3 (all water reservoir, trips started any time of the day) 394 

r0 ratio of anglers 0.273 (0.235–0.312) 0.222 (0.196–0.248) 395 

a  weekend multiplier (log) 0.248 (0.072–0.450) 0.062 (0.002–0.209) 396 

p  final ratio  0.255 (0.232–0.280) 0.203 (0.185–0.222) 397 

_________________________________________________________________________________________ 398 

 399 
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 400 

Bayesian estimates of sonar usage probabilities (Table 2.) could now be used to estimate the annual 401 

number of angling trips conducted in the mornings within the drone surveyed area. For this estimation 402 

linear model predictions were not required, instead it relied upon the daily numbers of sonar users 403 

(Table A.4). As with the linear model analyses, we estimated the annual number of fishing trips 404 

starting from 2020-03-01, but unlike the linear model, we used the actual daily number of sonar trips 405 

logged in the mornings within the surveyed area and applied the parameter estimates and their 95% 406 

PPD values to convert the number of sonar users to the actual number of anglers (in the mornings 407 

within the surveyed area). Here, the estimated annual number of angling trips was ca ~27*103 408 

(14*103–58*103), which included ~24*103 anglers during the open water season and ~2.5*103 during 409 

the ice fishing season (Table 1). These numbers were similar to the linear model results with 95% 410 

PPD ranges overlapping with the linear model confidence ranges (note however that these uncertainty 411 

estimates are not identical measures, being derived from different assumptions).  412 

 413 

To extrapolate this number to the total Kaunas WR area for angling trips conducted at any time of the 414 

day we used two slightly different methods. For Method 1, we combined two sources of uncertainty 415 

– estimates of sonar usage proportion in the mornings for the survey area (Table 2 top) and those for 416 

extrapolating from the surveyed area in the mornings to the total numbers of daily sonar users in the 417 

reservoir. (Table 2 bottom). This gave a total 50% posterior probability estimate of 107*103 annual 418 

angling trips in the Kaunas WR, which included ca 98*103 trips during the open water season and 419 

12*103 for the seven weeks of ice fishing season (Table 1). Alternatively (Method 2), we simply 420 

assumed that the probability of sonar usage was identical for the entire Kaunas WR during any time 421 

of the day. Then we used total the number of sonar users recorded on each day anywhere in the 422 

Kaunas WR and applied the probability of sonar usage proportion (Table 2 top) for open water and 423 

ice fishing seasons separately. The two approaches gave substantially similar results (Table 1), 424 

although the uncertainty ranges for the second method were slightly smaller.  425 

 426 

4. Discussion 427 

 428 

In this comparative study we explored three different methods to assess angling effort in a large water 429 

reservoir. We found that traditional vessel-based and fixed-wing drone methods gave similar 430 

accuracy, but drone missions were more time effective (with further possibilities for improvement) 431 
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and also provided objective high-resolution digital records for data quality reassessment and future 432 

analyses. About 40 surveys conducted over four seasons of a year were sufficient to estimate the 433 

annual number of fishing trips with relatively low uncertainty ranges, identifying about ~25 thousand 434 

annual fishing trips within the surveyed area for the particular time period of the day. This number 435 

was similar to estimates from the daily sonar records (~26 thousand), which although not entirely 436 

independent (because of the drone-based calibrations) still provided high resolution daily records of 437 

sonar users. Notably, the linear model, with and without ice effect, gave similar overall annual 438 

estimates of anglers, suggesting that a simple model with only a weekend effect might be able to 439 

capture most of the variation in fishing effort.  440 

 441 

4.1 Fixed wing drones can provide fast and accurate methods for angler counts 442 

 443 

As recreational fishery becomes one of the most important sources of fishing mortality in many 444 

freshwater and coastal marine environments, there is an urgent need to develop rapid angling effort 445 

assessment methods, yet such assessments are still remarkably rare (but see Veiga et al. 2010; Pope 446 

et al., 2017; Askey et al., 2018; Provost et al., 2020b, for specific examples). The most common 447 

methods used to date include roving surveys on foot or from a boat (Veiga et al., 2010; Provost et al., 448 

2020b), high frequency time-lapse cameras (Askey et al., 2018), small drones – quadcopters (Provost 449 

et al., 2020b) and small fixed-wing aircraft e. g. Cessna 210 (Veiga et al., 2010). Although fixed-450 

wing drones have been used in fisheries management for a while (Kopaska, 2014), they are mostly 451 

applied for habitat mapping or even water quality surveys (Shintani and Fonstad, 2017), but not for 452 

enumerating angler activity. Yet, fixed wing drones have many advantages over smaller quadcopter 453 

type drones, such as faster flying speed, longer battery life, lower sensitivity to weather conditions 454 

and higher payload capacity (González‐ Jorge et al., 2017; Harris et al., 2019). Fixed wing drones 455 

still have shorter flying times than airplane-based surveys, but airplane surveys are likely much more 456 

expensive, require highly trained personnel (pilots) and are often not feasible for smaller research 457 

projects. Below we compare previous and our current drone and land-based surveys in terms of their 458 

accuracy, time and costs, reproducibility and application in different weather and light conditions. 459 

 460 

First of all, it must be noted that accuracy and precision of drone-based surveys will strongly depend 461 

on the resolution of recorded video and levels of experience of the drone operators. This resolution 462 

will be a trade-off between the weight of the cameras, data intensity and analysis accuracy. The 463 

optimum resolution used in our study was 4K cameras and video recording of 30–60 fps. With two 464 
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cameras working in parallel this produced up to 1 GB of video data for a 1.5-hour mission. Post-465 

processing of all 39 surveys was done by the same person, leading to consistency of final angler 466 

counts and rapid post-processing speed after an initial training period. Boat-based surveys were 467 

conducted by two experienced people, who, given a relatively slow boat speed could thoroughly 468 

survey the entire coastline. As a result, the final angler counts in drone and boat surveys were very 469 

similar, except when counting the number of anglers per boat. Here, the drone-based team made a 470 

decision to count only one angler per each small motorboat or inflatable rowing boat and eliminate 471 

all yachts by assigning these as non-anglers. Although in many cases drone footage could identify 472 

individual fishing rods, assessing how many people in each boat had rods could create a substantial 473 

error and require lengthy post-processing analysis. Such distinction between anglers and non-anglers 474 

was easier to make when surveying from a boat, although absence of a permanent digital record means 475 

that in each case such decisions remain partly subjective and could be biased. The challenge of 476 

identifying people in boats as anglers or non-anglers is not new. For example, angler counts from 477 

manned aircraft and drone (quadcopter) systems within a 10.6 km length of Beaver Dam Tailwater 478 

(USA) also mostly differed in how anglers in boats were counted (Fernando et al., 2019). More people 479 

in boats were considered to be boat anglers using the manned aircraft than the drones as observers in 480 

the manned aircraft recorded some non-fishing boat occupants as anglers (confirmed with a detailed 481 

analysis of drone records). These results suggest that the permanent record made by a drone has a 482 

huge advantage due to its higher precision attained during postprocessing, although this may come at 483 

increased analytical costs.  484 

 485 

Our results are quite different from Provost et al. (2020b), who compared boat-based counts with 486 

those from a small quadrocopter drone equipped with one standard integrated camera with a 487 

polarizing lens. During 16 surveys it was found that on average the drone observed only half of the 488 

anglers counted by boat and took three times longer to complete each survey (including time needed 489 

for video analysis). These authors concluded that using quadrocopter drones was cheaper compared 490 

to vessel-based surveys, but the drone surveys took longer and failed to detect all fishers, especially 491 

those underneath trees or obscured by objects (Provost et al., 2020b). Obviously, counting anglers 492 

obscured by vegetation is a challenge for all visual surveys, but in drone-based analyses this could be 493 

partly overcome by using two or three cameras with different viewing angles. In our study the drone 494 

was equipped with two cameras, one of them inclined at an angle to provide a better lateral view (Fig. 495 

1). Further, drone-based surveys can have a substantial advantage if they are also equipped with 496 

infrared cameras, such as already commonly used in wildlife research (Burke et al., 2019). The 497 
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application of infrared cameras also opens up a possibility for drone-based angler surveys to be 498 

conducted at night or in low visibility conditions.  499 

 500 

The second important aspect of comparing traditional and drone-based surveys is the price and 501 

accessibility to good quality affordable devices across different countries. In our study, the initial cost 502 

of a fully equipped fixed-wing drone was slightly higher (c. 3500 euro) compared to equipment 503 

needed for vessel-based missions (c. 2800 euro), yet the price per individual mission was lower for 504 

drones due to the considerably shorter time required for analysis. Obviously, initial capital equipment 505 

costs can vary dramatically, ranging e. g. c. $900 for an off‐ the‐ shelf drone used for fine‐ scale 506 

shark movements (Raoult et al., 2018) to c. $35,000 for a custom‐ made hexacopter used for leopard 507 

seal (Hydrurga leptonyx) photogrammetry (Krause et al., 2017). Prices of fully equipped fixed-wing 508 

drones, like the one used in our study, usually range from ca 2000 to 20000 euros, although in our 509 

case the drone was custom made. Nevertheless, given the recurrent nature of angler surveys, and 510 

increasing availability of different types of drones, one of the major cost components is the labour 511 

required for each mission. Here the prices per mission will mostly depend on the salary costs of 512 

relevant personnel – technicians, scientists and pilots operating drones – which all differ among 513 

countries, as well as boat fuel costs (not required for drones). In our study the total time required per 514 

drone mission was about half of that used in boat-missions, even when including the post-processing 515 

time. This difference would be even higher for angler surveys undertaken in larger water bodies, or 516 

water bodies with complex shorelines, as these would take considerably longer to survey by boat. To 517 

survey 35 km2 area, the drone we used took about 1–1.5 h depending on the weather conditions, due 518 

to its fast-flying speed (50–60 km/h) and ability to pre-program the mission trajectory, which means 519 

that minimum piloting was required on site. Data postprocessing is currently the most time consuming 520 

and potentially costly aspect of any drone project (Harris et al., 2019). During this study, video 521 

analysis was performed manually by one of the research group analysts and took approximately 1–522 

1.5 h per individual mission. Yet, data post-processing can be considerably sped up using machine 523 

learning, especially if combined with thermal imagery, multispectral photography, light detection and 524 

ranging (LiDAR), and other sensors (Chust et al., 2008; Yang and Artigas, 2010; Klemas, 2015; 525 

Yahyanejad and Rinner, 2015).  526 

 527 

Finally, an important advantage of fixed-wing drone surveys is the permanent, high resolution and 528 

spatially precise digital record, essential for reproducibility of results, reduced bias and future 529 

analyses. Moreover, fixed-wing drones can conduct angler counts in a range of weather conditions 530 
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and, if thermal imagery cameras are used, even at night. To our knowledge night angler-counting 531 

surveys are exceptionally rare (but see a study observing angler activity from parking lots, Bova et 532 

al., 2018), which leaves a large unknown in angling effort assessments. In our study the drone could 533 

be deployed in high winds (15 m/s) and low temperatures (-20C), all potentially causing challenges 534 

for small hexacopter drones, as well as for boat or land-based surveys. Due to their relatively high-535 

flying altitude (50–70 meters in current research) and electric engines, fixed wing drones are also 536 

inaudible and virtually invisible to anglers, creating less disturbance to their fishing activities. The 537 

major challenge for drone-based surveys could be special aviation restrictions for flying drones, such 538 

as the no-fly zone in the western part of the Kaunas water reservoir which falls within the restricted 539 

airspace of Kaunas Airport (Fig. 1) as well as country specific challenges related to the General Data 540 

Protection Regulation (GDPR). In such cases, at least a few of other angler assessment methods 541 

(traditional or smart phone application based, see below) must be conducted in parallel to enable the 542 

extrapolation of angler counts.  543 

 544 

4.2 Assessments based on fish finder/sonar devices have huge advantages but still require 545 

work  546 

 547 

Technological development and availability of various fish finding devices and sonars has led to rapid 548 

and dramatic changes in all aspects of angling, and in many cases are considered to negatively affect 549 

fish species and stocks by increasing the fishing power of anglers (Cooke et al., 2021). These devices 550 

enable the measurement of depth, scan for bottom structure and vegetation, but their primary purpose 551 

is to locate fish. More advanced devices allow users to store maps from previous fishing trips and 552 

create personal databases. If stored online, de-personalised data from such databases may also be used 553 

for scientific purposes (Venturelli et al., 2016). We compared de-personalized data from fish finder 554 

Deeper® sonar users, with angler numbers obtained from fixed-wing drone missions flown over the 555 

same area during the same time interval and were able to calibrate the proportion of sonar users with 556 

surprisingly low uncertainty.  557 

 558 

For open water fishing about 2% (1.5–2.6%) of anglers on any given day used the sonar device, with 559 

the proportion being slightly higher on the weekends. During the ice fishing season, the device was 560 

considerably more popular and nearly 15% (12–18%) of anglers used it on any given day. This is not 561 

unexpected, because the Deeper® sonar device is especially useful for ice fishing, since it is relatively 562 

cheap, light and portable, making it convenient when fishing from a stable location (ice), but less so 563 
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if fishing from the confines of a rocking boat.  Such high adoption rates of the device allowed better 564 

estimates of daily angler numbers and extrapolation to the entire Kaunas WR. Importantly, our 565 

extrapolation showed that drone surveys conducted within the area where flights were permitted 566 

(~70% of total area) during the mornings, counted about one quarter of all fishing trips. If no other 567 

knowledge about angler distribution was available, then the simplest extrapolation would be to 568 

assume that anglers are distributed evenly in the Kaunas WR, and that half of all anglers fish during 569 

mornings. This would imply that drone-based surveys observed about 35% of all fishing trips. Yet, 570 

the no-fly zone was close to the Kaunas City where angler density was expected to be higher, 571 

especially during the ice season, hence the observed number of anglers would be less than 35% of the 572 

total. Ideally, drone-based surveys should be conducted during mornings and evenings to assess 573 

whether the probability of sonar usage is similar between these periods of the day. However, in this 574 

study we relied on visual angler counts from drones which would make angler counting at dusk 575 

challenging as infrared cameras were not operationally available (but are currently being tested). 576 

Further, given the limited number of drone missions available for this study we focused on 577 

minimising error across weekdays and seasons, rather than different times of the day.  578 

 579 

Although the uncertainty ranges around the frequency of sonar use are relatively small, when 580 

uncertainty is fully propagated, the final annual number of fishing trips in Kaunas WR is estimated 581 

to be in the range of 52–250 thousand (95% posterior probability range), with the median of ~107 582 

thousand. In comparison, a 6-month study during 1999–2000 of Lake Dartmouth, a 64 km2 reservoir 583 

located in the mountains of Victoria, southeastern Australia, used automatic car counters to record 584 

2156 vehicle-trailer departures equating to approximately 3600 vessel trips when annualised 585 

(Douglas and Giles, 2001). This reservoir is only accessible by boat via a single launching ramp and 586 

Hunt et al. (2011) later scaled the vessel counts using concurrent creel survey data from anglers 587 

retrieving their vessels at the ramp to estimate total annual effort of 91 thousand angler hours during 588 

1999–2000. Although a popular inland angling destination, Lake Dartmouth is relatively remote and 589 

far less populous than the environs of Kaunas WR.  590 

For the mornings of the survey area, the linear model and Bayesian analyses gave substantially similar 591 

mean values, but Bayesian 95% uncertainty ranges were considerably wider, especially in the upper 592 

portion of the range. Compared with other assessment methods, the combination of the two 593 

approaches used here are highly promising not only for estimating the total number of anglers, but 594 

also for more detailed assessments of fishing effort. Daily sonar data can help show occasional high 595 

peaks in fishing effort that could have substantial impact on fish stocks, yet might be missed in 596 
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stratified visual sampling and application of linear models. Moreover, the sonar data offers many 597 

other unique insights, such as spatial changes in angler movements, response to specific restrictions 598 

and other angler behaviour aspects (in preparation). Fish-finder devices can also provide data on 599 

bottom structure or vegetation cover, and more importantly they accumulate acoustic data of fish 600 

population abundance and, occasionally, size structure. Such acoustic data is used in standard 601 

approaches for the evaluation of marine fish stock status (Wassermann and Johnson, 2020), but 602 

private fish-finder devices open potentially new opportunities for stock assessments in inland water 603 

bodies. Availability of such data, however, is entirely dependent on collaborative efforts between 604 

fish-finder manufacturing companies, and we suggest more work should be done to promote and 605 

acknowledge successful collaboration initiatives between companies and researchers within and 606 

between different countries.  607 

 608 

Before the fish-finder device data can be applied widely in assessing stock status, there are some 609 

important caveats to be addressed. First, there should be a sufficient uptake of these devices among 610 

an angler population to provide acceptably accurate estimates, thus additional studies are needed to 611 

determine country and region-specific uptake through time. For example, according to company 612 

estimates and our online surveys, nearly 20% of Lithuanian anglers have the Deeper® sonar device, 613 

yet only around 2% of anglers on a given day used the device during the open water season. It is not 614 

entirely clear what minimal total uptake rate (5, 10 or 20%) among the population of anglers is needed 615 

before sufficiently accurate data can be obtained, but the ~20% of total anglers using the device in 616 

Lithuania seems to give relatively narrow uncertainty ranges, at least in Kaunas WR, especially 617 

keeping in mind that according to Gundelund et al. (2021) 8-10% angler app users of total angler 618 

population were sufficient to give reliable estimates of e.g. sea trout catches and release rates. Second, 619 

calibration studies are and will be required to assess the relative proportion of device users among 620 

anglers in locations close and far away from big cities, through seasons, weekdays, different regions 621 

of the country and changes through time. Our angler surveys suggest that many anglers only used the 622 

device occasionally, some only a few times after their purchase, whereas others used it regularly. The 623 

number of sonar users will also depend on further development of the device with additional features 624 

and benefits, marketing strategies aimed at convincing anglers of the benefits, economic 625 

circumstances affecting future research and development and pricing-affordability, and availability 626 

of other devices competing for market share. These kinds of factors will variously influence the 627 

proportion of active users which may decrease, increase or remain stable over time with consequential 628 

effects on data availability for researchers. A large range of fish-finder devices of different complexity 629 
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and price both presents an opportunity, but also means that the uptake will vary among anglers and 630 

data from a particular type of device might be biased towards more dedicated and specialized anglers 631 

(Gundelund et al. 2020). Hence, regular calibration with independent observations will still be 632 

required, but could potentially be reduced to a smaller number of missions than the 39 used in this 633 

study. Finally, collaboration with fish-finder manufacturing companies also offers an opportunity to 634 

engage a population of anglers in citizen science projects, enabling their active participation in stock 635 

status assessments. Such opportunities often generate positive outcomes for angler satisfaction and 636 

stock status (Lee et al. 2020). 637 

 638 
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Figure 1. Side and front views of the wide-angle camera setup used for aerial survey, where CAM1 

is facing forward and downward (β ≈ 25°) optimized to view boat-based anglers and CAM2 is facing 

right-side downward (α ≈ 30°) to increase the visibility of anglers at the shoreline. The map of the 

Kaunas WR shows the two drone flight paths, divided into two mission trajectories (yellow and blue); 

red points indicate traditional visual observation sites during the ice fishing season. The inset show 

Kaunas WR location in Lithuania.  

 

Figure 2. Observed (blue dots) and model predicted (red confidence ranges) numbers of anglers on 

weekdays and weekends, depending on ice conditions, estimated from 37 drone surveys (two outlier 

days excluded). The grey area shows the distribution shape of the data. Model with the full dataset 

from 39 days is shown in Figure A.2.  

 

Figure 3. Posterior probability density plots for parameter estimates for open water (top) and ice 

(bottom) fishing seasons in the dataset, comparing drone observations and sonar usage in the same 

spatial area and daytime (mornings only). The final probability of sonar usage (p) accounts for the 

initial probability (r0) and weekend multiplier (a).  

 

Supplementary Figure A.1. Prediction from a simpler model with only the weekend effect included. 

 

Supplementary Figure A.2. Model predictions with the full data set that included two unusually low 

angler number days. 

 

Supplementary Figure A.3. Detailed drone (blue) and sonar (red) user coordinates for example days. 

2021-01-23: all sonar observations in all area for this day are shown  

 

Supplementary Figure A.4. Detailed drone (blue) and sonar (red) user coordinates for example days. 

2020-01-23: only sonar data between 6 a.m. and 12 p.m. in drone inspected area, given that drone 

flights occurred at 9-10 a.m. 
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